En la tesis se analiza el problema de la existencia de los objetos que estudia la matemática. Se discuten y critican las posiciones actualmente más defendidas (enmarcadas en el platonismo matemático y el ficcionalismo matemático). Para este análisis se considera la consistencia interna de cada postura, así como su consistencia con la práctica matemática. A continuación. se propone una solución alternativa, que denominamos “convencionalismo moderado”. De acuerdo con esta propuesta, los objetos matemáticos son convenciones sociales, de naturaleza similar al dinero o las fronteras nacionales. Pero estas convenciones no son arbitrarias, sino que, en última instancia, están basadas en ciertos conceptos innatos como los asociados a la idea de “cantidad” o “distancia”. De este modo, la existencia de los objetos matemáticos sería independiente de los individuos, pero no de la especie humana considerada globalmente. Como caso de estudio, se analiza, a la luz del convencionalismo moderado, la idea (actualmente muy extendida) de que todos los objetos matemáticos pueden definirse a partir de nociones conjuntistas.
Fil: Piñeiro, Gustavo. Universidad de Buenos Aires. Facultad de Filosofía y Letras.